

Week 1 – Week 2 Progress Summary

Jin Hu
July 7, 2005

Adders

Design Summary

 8-bit Adder 16-bit Adder 32-bit Adder 64-bit Adder
Logic Utilization Used Used Used Used
Slices 5 9 17 33
Slice Flip-Flops 9 17 33 65
4-Input LUTs 8 16 32 64
Bonded IOBs 27 51 99 195

Table 1: Adders’ Space Requirements

Graphs

 Number Slices Used vs. Adder Bit Size

8, 5
16, 9

32, 17

64, 33

y = 0.5x + 1
R2 = 1

0
5

10
15
20
25
30
35

0 20 40 60 8

Adder Bit Size

of

 S
lic

es
 U

se
d

0

Number Slice FFs vs. Adder Bit Size

8, 9
16, 17

32, 33

64, 65

y = x + 1
R2 = 1

0
10
20
30
40
50
60
70

0 20 40 60 8

Adder Bit Size

of

 S
lic

e
FF

0

s

Figure 1: Graph of Number of Slices Used

vs. Adders’ Bit Size
Figure 2: Graph of Number of Slice FFs

 vs. Adders’ Bit Size

Number 4-Input LUTs vs. Adder Bit Size

8, 8
16, 16

32, 32

64, 64

y = x
R2 = 1

0

20

40

60

80

0 20 40 60 8

Adder Bit Size

LU

Ts

0

Number Bonded IOBs vs. Adder Bit Size

8, 27
16, 51

32, 99

64, 195

y = 3x + 3
R2 = 1

0
50

100
150
200
250

0 20 40 60 8

Adder Bit Size

B

on
de

d
IO

B

0

s

Figure 3: Graph of Number of 4-Input LUTs vs.
Adders’ Bit Size

 Figure 4: Graph of Number of Bonded IOBs vs.
Adders’ Bit Size

From the graphs, notice that the relationship between any of the parameters and the adder bit-size (8-
bit, 16-bit adder) is linear. On each of the graph shows the linear regression as well as the correlation
coefficient.

 1

Logic Distribution Tables

Logic Distribution (8-bit Adder) Used Available Utilization

occupied Slices 5 depends on board varies

Slices containing only related logic 5 5 100%

Slices containing unrelated logic 0 5 0%
Table 2: 8-bit Adder Logic Distribution Statistics

Logic Distribution (16-bit Adder) Used Available Utilization

occupied Slices 9 depends on board varies

Slices containing only related logic 9 9 100%

Slices containing unrelated logic 0 9 0%
Table 2: 16-bit Adder Logic Distribution Statistics

Logic Distribution (32-bit Adder) Used Available Utilization

occupied Slices 17 depends on board varies

Slices containing only related logic 17 17 100%

Slices containing unrelated logic 0 17 0%
Table 3: 32-bit Adder Logic Distribution Statistics

Logic Distribution (32-bit Adder) Used Available Utilization

occupied Slices 33 depends on board varies

Slices containing only related logic 33 33 100%

Slices containing unrelated logic 0 33 0%
Table 4: 64-bit Adder Logic Distribution Statistics

This data on this page shows that out of all the slices used, all the slices contain relevant logic. In
other words, all resources used are devoted to one module synthesis.

 2

Constraint Testing

Table 5: Areas Constrained with Various Adders on a Virtex-4™ xc4vfx12 Model

Constraints range* [slice coordinates] xc4vfx12-11ff668
Type

Passed? top left x top left y bottom right x bottom right y x side length y side length total area [slices]
8-bit yes 34 119 35 116 2 4 8
16-bit yes 34 123 35 116 2 8 16
32-bit yes 26 121 27 106 2 16 32
64-bit yes 28 115 29 84 2 32 64

Table 6: Areas Constrained with Various Adders on a Virtex-4™ xc4vfx15 Model

Constraints range* [slice coordinates] xc4vfx15-11ff668
Type

Passed? top left x top left y bottom right x bottom right y x side length y side length total area [slices]
8-bit yes 36 99 37 96 2 4 8
16-bit yes 34 123 35 116 2 8 16
32-bit yes 28 117 29 102 2 16 32
64-bit yes 34 119 35 88 2 32 64

Table 7: Areas Constrained with Various Adders on a Virtex-4™ xc4vfx20 Model

Constraints range* [slice coordinates] xc4vfx20-11ff672
Type

Passed? top left x top left y bottom right x bottom right y x side length y side length total area [slices]
8-bit yes 40 105 41 102 2 4 8
16-bit yes 30 123 31 116 2 8 16
32-bit yes 46 123 47 108 2 16 32
64-bit yes 24 119 25 88 2 32 64

range* refers to the area range constrained manually. The four columns denote the coordinates (in
slices) of the top left and bottom right corner of the rectangle. The slice coordinates have the same
properties as a XY plane in a Cartesian plane. For example, taking Table 7’s data for the 8-bit adder,
the area would look like the following:

Figure 5: Example of Constraint Area

(36, 99)

(37, 96)

Area: 2x4

The side lengths of the rectangle (x side length, y side length) are then calculated along with the area
in units of slices covered (total area).

As noticed in the tabulated data, all the adders fit within the constrained areas.

 3

Constraint Graphs

 Constraint Area vs. Adder Bit Size on

xc4vfx12-11ff668 Model

8, 8
16, 16

32, 32

64, 64

y = x
R2 = 1

0

20
40

60

80

0 20 40 60 8

Adder Bit Size

To
ta

l A
re

a
[s

lic
es

]

0

 Figure 6: Graph of Area needed vs. Adders’ Bit

Size on the xc4vfx12-11ff668 board

Constraint Area vs. Adder Bit Size on
xc4vfx15-11ff668 Model

8, 8
16, 16

32, 32

64, 64

y = x
R2 = 1

0

20
40

60

80

0 20 40 60 8

Adder Bit Size

To
ta

l A
re

a
[s

lic
es

]

0

Figure 7: Graph of Area needed vs. Adders’ Bit
Size on the xc4vfx15-11ff668 board

Constraint Area vs. Adder Bit Size on
xc4vfx20-11ff672 Model

8, 8
16, 16

32, 32

64, 64

y = x
R2 = 1

0

20
40

60

80

0 20 40 60 8

Adder Bit Size

To
ta

l A
re

a
[s

lic
es

]

0

Figure 8: Graph of Area needed vs. Adders’ Bit
Size on the xc4vfx20-11ff672 board

From the graphs, the space needed to implement adders is just the adder’s bit-width.

 4

Pictures of Implemented Adders

One peculiar observation that I had noticed was that a given adder (e.g. 8-bit) generated under
different Virtex-4™ boards yielded different results. Namely, if an adder is generated under a smaller
board model, the adder will look differently than generated under a larger model. Below are two
pictures that show the different more clearly.

The left 32-bit adder was generated under the xc4vfx12-11ff668 board while the right 32-bit adder was
generated under the xc4vfx20-11ff672 board. The smaller board’s model has an extra loop of wiring at
the top while the bigger board’s model is just a straight line. Both adders are representative of their
type (i.e. an adder generated under those conditions will take on similar shape). The difference in the
two pictures is highlighted in red.

Adder

Adder

Loop

Figure 9: 32-bit Adder Generated Under
xc4vfx12-11ff668 Parameters

Figure 10: 32-bit Adder Generated
Under xc4vfx20-11ff672 Parameters

 5

Multipliers

Design Summary

 8-bit Multiplier 16-bit Multiplier 32-bit Multiplier 64-bit Multiplier
Logic Utilization Used Used Used Used
Slices 45 160 588 2222
Slice Flip-Flops 32 64 128 256
4-Input LUTs 73 285 1104 4298
bonded IOBs 33 65 129 257
Period [ns] (no constraints**) 5.601 7.876 11.088 15.651
Maximum Frequency [MHz] 178.54 126.97 90.2 63.892

Table 8: Multipliers’ Space Requirements

Graphs

Number Slices Used vs. Multiplier Bit Size

8, 4516, 160
32, 588

64, 2222

y = 0.508x2 + 2.3077x - 6.3333
R2 = 1

0

500

1000

1500

2000

2500

0 20 40 60 8

Multiplier Bit Size

Sl

ic
es

0

Number Slices FFs vs. Multiplier Bit Size

8, 32
16, 64

32, 128

64, 256

y = 4x
R2 = 1

0
50

100
150
200
250
300

0 20 40 60 8

Multiplier Bit Size

Sl

ic
es

 F
Fs

0

Figure 12: Graph of Number of Slice
FFs Used vs. Multiplier Bit Size

Figure 11: Graph of Number of Slices
Used vs. Multiplier Bit Size

Number 4-Input LUTs vs. Multiplier Bit Size

8, 7316, 285
32, 1104

64, 4298

y = 1.0155x2 + 2.3399x - 11.333
R2 = 1

0

1000

2000

3000

4000

5000

0 20 40 60 80

Multiplier Bit Size

LU

Ts

Number Bonded IOBs vs. Multiplier Bit Size

8, 33
16, 65

32, 129

64, 257

y = 4x + 1
R2 = 1

0
50

100
150
200
250
300

0 20 40 60 8

Multiplier Bit Size

B

on
de

d
IO

B
s

0

 Figure 14: Graph of Number of
Bonded IOBs vs. Multiplier Bit Size

Figure 13: Graph of Number of 4-
Input LUTs vs. Multiplier Bit Size

From the graphs, it is apparent that the relationship for multipliers and the number of slices needed
goes up nonlinearly. Thus, a polynomial regression (of order 2) has been used on the number of slices
and the number of 4-Input LUTs.

 6

Period vs. Multiplier Bit Size

8, 5.601
16, 7.876

32, 11.088

64, 15.651

y = -0.0016x2 + 0.2913x + 3.4618
R2 = 0.9993

From the graphs, the minimum time needed for complete execution (one clock cycle) increases non-
linearly. Note if we were to keep the constraint of 10 ns, then we would have to stop at:

Since 155 bits does not apply, we know that we can only stop at the 26-bit multiplier.

**When constrained to a certain area, the amount of time the period increases by a maximum of 1 to 2
ns, but generally less than that.

0

5

10

15

20

0 20 40 60 80

Multiplier Bit Size

Pe
rio

d
[n

s]

Figure 15: Period vs. Multiplier Bit Size

Max Frequency vs. Multiplier Bit Size

8, 178.54

16, 126.97

32, 90.2
64, 63.892

y = 0.0537x2 - 5.7982x + 215.86
R2 = 0.9793

0

50

100

150

200

0 20 40 60 80

Multiplier Bit Size

Fr
eq

ue
nc

y
[M

H
z]

Figure 16: Max Frequency vs. Multiplier Bit Size

bits 155or bits 26
4618.32913.00016.010

4618.32913.00016.0
2

2

==→
++−=→

++−=

xx
xx
xxy

 7

Logic Distribution Tables

Logic Distribution (8-bit Multiplier) Used Available Utilization

occupied Slices 45 depends on board varies

Slices containing only related logic 45 45 100%

Slices containing unrelated logic 0 45 0%
Table 9: 8-bit Multiplier Logic Distribution Statistics

Logic Distribution (16-bit Multiplier) Used Available Utilization

occupied Slices 160 depends on board varies

Slices containing only related logic 160 160 100%

Slices containing unrelated logic 0 160 0%
Table 10: 16-bit Multiplier Logic Distribution Statistics

Logic Distribution (32-bit Multiplier) Used Available Utilization

occupied Slices 588 depends on board varies

Slices containing only related logic 588 588 100%

Slices containing unrelated logic 0 588 0%
Table 11: 32-bit Multiplier Logic Distribution Statistics

Logic Distribution (32-bit Multiplier) Used Available Utilization

occupied Slices 2222 depends on board varies

Slices containing only related logic 2222 2222 100%

Slices containing unrelated logic 0 2222 0%
Table 12: 64-bit Multiplier Logic Distribution Statistics

Similar to the adder logic distribution tables, this information shows that all the occupied slices contain
only relevant logic.

 8

Constraint Testing
Constraint testing for multipliers varied significantly from adders. The algorithms used to generate the
wire mapping seem to use the area constraint specified more as a guideline than a requirement. In
other words, all of the occupied slices were within the area but the wires were free to go about the
board. The algorithm also seems to expand as much as possible to fill the specified area. This is evident
when implementing 16-bit and 32-bit multipliers (only 32-bit is shown). Thus, every implementation I
ran could never officially meet the constraints.

The following will be pictures of multipliers and the only the total area specified for constraint. The
table below will showcase each multiplier, the area constrained (pictured in yellow), and my personal
thought on if we adjusted manually what the space needed would be (pictured in white). All
measurements are done in units of slices.

*64-bit multipliers were not implemented.

Multiplier Constraint Dimensions Total Area Possibility Total Area Total Slices Needed Corresponding Figure #
8-bit 2x26 52 2x24 48 45 18
8-bit 8x8 64 8x8 64 45 19
8-bit 30x48 1140 4x14 56 45 20
16-bit 6x40 240 6x34 204 160 21
32-bit 12x60 720 10x60 600 588 22
32-bit 30x126 3780 n/a n/a 588 23

Table 13: All Constraint Data on Multipliers

Multiplier "Best" Dimensions Total Area Reasoning

8-bit 4x14 56
Fitting within 48 slices is a stretch; 4x14

area looks reasonable on Figure 16

16-bit 6x34 204
If lucky, this is possible. 8x34 (272) is

more feasible

32-bit 10x60 600
This sizing looks feasible. Otherwise, a

safe estimate is 12x60 (720)

Table 14: “Best” Constraint Data on Multipliers

The data in Table 14 merely portrays my personal thoughts with respect the wiring layout generated by
the Xilinx® software package. This data is only meant to give the reader an idea of the general shape
and size of the multipliers.
 Constraint Area vs. Multiplier Bit Size

8, 56

16, 272

32, 720

y = 27.714x - 168
R2 = 0.9999

0

200

400

600

800

0 10 20 30 40

Multiplier Bit Size

To
ta

l A
re

a
[s

lic
es

]

Figure 17: Graph of Area needed vs. Multipliers’ Bit Size

From the graph, the area needed increases linearly with the multiplier bit-width.

 9

Guide and Legend

Note that in the following pictures, one violet ‘grid’ sector contains four (4) slices – 2x2 slice sections.
Also note that some sectors do not have slices at all (dividers on the FPGA board).
 No Slices

: Personal Constraint

 : Specified Constraint

(Sometimes not
shown due to size)

4 Slices

Figure 18: Standard Virtex-4™
FPGA Board

Pictures of Implemented Multipliers

8-bit Multipliers

Figure 19: 8-bit Multiplier
constrained at 2x26

Figure 20: 8-bit Multiplier
constrained at 8x8

Figure 21: 8-bit Multiplier
constrained at 20x38

(Actual constraint not shown)

 10

16-bit Multiplier

 Figure 22: 16-bit Multiplier

constrained at 6x40
(Actual Constraint not shown)

32-bit Multiplier

 Figure 23: 32-bit Multiplier

constrained at 12x60
Figure 24: 32-bit Multiplier

constrained at 30x126
(No constraints shown)

 11

Pipeline Dividers

Design Summary

 8-bit Divider 16-bit Divider 32-bit Divider
Logic Utilization Used Used Used
Slices 116 482 1806
Slice Flip-Flops 224 832 3200
4-Input LUTs 79 287 1087
bonded IOBs 37 69 133
Period [ns] (no constraints**) 2.981 3.407 4.303
Maximum Frequency [MHz] 335.5 293.5 232.4

Table 15: Dividers’ Space Requirements

Graphs

Number Slices Used vs. Divider Bit Size

8, 116

16, 482

32, 1806

y = 1.5417x2 + 8.75x - 52.667
R2 = 1

0

500

1000

1500

2000

0 10 20 30 40

Divider Bit Size

Sl

ic
es

Number Slice FFs vs. Divider Bit Size

8, 224
16, 832

32, 3200

y = 3x2 + 4x - 9E-12
R2 = 1

0
500

1000
1500
2000
2500
3000
3500

0 10 20 30 40

Divider Bit Size

Sl

ic
e

FF
s

Figure 25: Graph of Number of Slices
Used vs. Multiplier Bit Size

Figure 26: Graph of Number of Slice
FFs vs. Divider Bit Size

Number 4-Input LUTs vs. Divider Bit Size

8, 79
16, 287

32, 1087

y = x2 + 2x - 1
R2 = 1

0
200
400
600
800

1000
1200

0 10 20 30 40

Divider Bit Size

LU

Ts

Number Bonded IOBs vs. Divider Bit Size

8, 37

16, 69

32, 133

y = 4x + 5
R2 = 1

0
20
40
60
80

100
120
140

0 10 20 30 40

Divider Bit Size

B

on
de

d
IO

B
s

 Figure 28: Graph of Number of
Bonded IOBs vs. Divider Bit Size

Figure 27: Graph of Number of 4-
Input LUTs vs. Multiplier Bit Size

Similar to multipliers, the above attributes increase non-linearly with the exception of bonded IOBs.

 12

Period vs. Divider Bit Size

8, 2.981
16, 3.407

32, 4.303

y = 0.0552x + 2.533
R2 = 0.9998

0

1

2

3

4

5

0 10 20 30 4

Divider Bit Size

Pe
rio

d
[n

s]

0

Max Frequency vs. Divider Bit Size

8, 335.5
16, 293.5

32, 232.4

y = -4.2277x + 366.05
R2 = 0.993

0

100

200

300

400

0 10 20 30 40

Divider Bit Size

Fr
eq

ue
nc

y
[M

H
z]

Figure 29: Period vs. Divider Bit Size Figure 30: Max Frequency vs. Divider Bit Size

From the graphs, the time needed for complete execution (and the frequency) varies linearly with the
number of bits on a divider.

**When constrained to a certain area, the amount of time the period increases by no more than 0.5 ns,
usually less than that.

 13

Logic Distribution Tables

Logic Distribution (8-bit Divider) Used Available Utilization

occupied Slices 116 depends on board varies

Slices containing only related logic 116 116 100%

Slices containing unrelated logic 0 116 0%
Table 16: 8-bit Divider Logic Distribution Statistics

Logic Distribution (16-bit Divider) Used Available Utilization

occupied Slices 482 depends on board varies

Slices containing only related logic 482 482 100%

Slices containing unrelated logic 0 482 0%
Table 17: 16-bit Divider Logic Distribution Statistics

Logic Distribution (32-bit Divider) Used Available Utilization

occupied Slices 1806 depends on board varies

Slices containing only related logic 1806 1806 100%

Slices containing unrelated logic 0 1806 0%
Table 18: 32-bit Divider Logic Distribution Statistics

Similar to the adder and multiplier logic distribution tables, this information shows that all the
occupied slices contain only relevant logic.

 14

Constraint Testing
Constraint testing for dividers was similar to that of multipliers. The algorithms used to generate the
wiring scheme used the area constraint only to place all the slices within and not the wires. Thus, even
for a ‘reasonable’ constraint, wires have the potential to go outside the specified area.

Likewise, this algorithm also expands to fill as much as the space specified as possible. An example is
shown in the 16-bit dividers section. Similarly to multipliers, the data in Table 20 only is to give the
reader a general idea and should not be taken without first analyzing the corresponding figures.

*64-bit dividers are not available in the CORE Generator
**32-bit divider pictures not shown. If desired, please submit an email request.

Divider Constraint Dimensions Total Area Possibility Total Area Total Slices Needed Corresponding Figure #
8-bit 8x22 176 8x18 144 116 32
8-bit 4x38 152 6x40 240 116 33
8-bit 28x114 3192 8x16 128 116 34
16-bit 20x28 560 22x30 660 482 35
16-bit 22x128 2816 n/a n/a 482 36
32-bit 46x46 2116 46x46 2116 1806 **

Table 19: All Constraint Data on Multipliers

Multiplier "Best" Dimensions Total Area Reasoning

8-bit 8x16 128
Regarding Figure 33, I believe that if

some slices were moved within the white
box, this would be feasible

16-bit 22x30 660
It can probably be done in either 22x28 or

20x30 as well

32-bit 46x46 2116
Even though wires come out of the area, I

believe that it is possible with some
manual wiring manipulation

Table 20: “Best” Constraint Data on Dividers

Constraint Area vs. Divider Bit Size

8, 128

16, 660

32, 2116

y = 84x - 600
R2 = 0.9948

0
500

1000
1500
2000
2500

0 10 20 30 40

Divider Bit Size

To
ta

l A
re

a
[s

lic
es

]

 Figure 31: Graph of Area needed vs. Multipliers’ Bit Size

From the graph, the area needed increases linearly with the divider bit-width.

 15

Pictures of Implemented Dividers

8-bit Dividers

 Figure 32: 8-bit Divider

constrained at 8x22
Figure 33: 8-bit Divider

constrained at 4x38
Figure 34: 8-bit Divider
constrained at 28x114

(Actual constraint not shown)

16-bit Dividers

 Figure 35: 16-bit Divider constrained at 20x28 Figure 36: 16-bit Divider constrained at 22x128

(No constraints shown)

 16

